Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMC Vet Res ; 18(1): 444, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2196274

ABSTRACT

The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.


Subject(s)
COVID-19 , Swine Diseases , Humans , Swine , Animals , Phylogeny , COVID-19/veterinary , Biological Evolution , Glycoproteins , Swine Diseases/epidemiology
2.
J Virol ; 97(2): e0194722, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193457

ABSTRACT

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


Subject(s)
CD13 Antigens , Deltacoronavirus , Spike Glycoprotein, Coronavirus , Virus Internalization , Animals , CD13 Antigens/genetics , CD13 Antigens/metabolism , Chickens/metabolism , Coronavirus Infections , Deltacoronavirus/metabolism , Swine , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Lentivirus/genetics , Lentivirus/metabolism
3.
J Virol ; : e0162622, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2137422

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.

4.
Vet Microbiol ; 276: 109616, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2122888

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a newly emerging swine enteropathogenic coronavirus with extensive tissue tropism and cross-species transmission potential. Heparan sulfate (HS) is a complex polysaccharide ubiquitously expressed on cell surfaces and the extracellular matrix and acts as an attachment factor for many viruses. However, whether PDCoV uses HS as an attachment receptor is unclear. In this study, we found that treatment with heparin sodium or heparinase Ⅱ significantly inhibited PDCoV binding and infection among LLC-PK1 and IPI-2I cells. Attenuation of HS sulfuration by sodium chlorate also impeded PDCoV binding and infection. Moreover, we demonstrated that HS functioned independently of amino peptidase N (APN), a functional PDCoV receptor, in PDCoV infection. Molecular docking revealed that the S1 subunit of the PDCoV spike protein might be a putative region for HS binding. Taken together, these results firstly confirmed that HS is an attachment receptor for PDCoV infection, providing new insight into better understanding the mechanisms of PDCoV-host interactions.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Molecular Docking Simulation , Coronavirus/physiology , Coronavirus Infections/veterinary , Deltacoronavirus
5.
Vet Sci ; 9(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116277

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative PCR (qRT-PCR) assay was established for the differential detection of PEDV, TGEV, PDCoV, and SADS-CoV from swine fecal samples. The assay showed extreme specificity, high sensitivity, and excellent reproducibility, with the limit of detection (LOD) of 121 copies/µL (final reaction concentration of 12.1 copies/µL) for each virus. The 3236 clinical fecal samples from Guangxi province in China collected between October 2020 and October 2022 were evaluated by the quadruplex qRT-PCR, and the positive rates of PEDV, TGEV, PDCoV, and SADS-CoV were 18.26% (591/3236), 0.46% (15/3236), 13.16% (426/3236), and 0.15% (5/3236), respectively. The samples were also evaluated by the multiplex qRT-PCR reported previously by other scientists, and the compliance rate between the two methods was more than 99%. This illustrated that the developed quadruplex qRT-PCR assay can provide an accurate method for the differential detection of four porcine enteric coronaviruses.

6.
Virus Res ; 322: 198954, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2050063

ABSTRACT

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhoea virus (PEDV) are the main porcine enteric coronaviruses that cause severe diarrhoea in piglets, posing huge threat to the swine industry. Our previous study verified that the co-infection of PDCoV and PEDV is common in natural swine infections and obviously enhances the disease severity in piglets. However, the effects of co-infection of PDCoV and PEDV on intestinal microbial community are unknown. In current study, the microbial composition and diversity in the colon of piglets were analyzed. Our results showed that both of PDCoV and PEDV were mainly distributed in the small intestines and caused severe damage of ileum but not colon in the co-inoculated piglets. Furthermore, we observed that PDCoV and PEDV co-infection alters the gut microbiota composition at the phylum, family and genus levels. The abundance of Mitsuokella and Collinsella at genus level were significantly increased in PDCoV-PEDV co-infection piglets. Spearman's correlation analysis further suggested that there existed strong positive correlation between Mitsuokella and TNF-α, IL-6 and IL-8 secretion, these two factors may together aggravating the small intestine pathological lesions. These results proved there existed obvious correlation between the disease severity caused by PDCoV-PEDV co-infection and intestinal microbial community.


Subject(s)
Coinfection , Coronavirus Infections , Gastrointestinal Microbiome , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Coinfection/veterinary
7.
Viruses ; 14(8)2022 08 18.
Article in English | MEDLINE | ID: covidwho-2010308

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen which mainly causes diarrhea, dehydration and death in nursing piglets, threatening the global swine industry. Moreover, it can infect multiple animal species and humans. Hence, reliable diagnostic assays are needed to better control this zoonotic pathogen. Here, a blocking ELISA was developed using a recombinant nucleocapsid (N) protein as the coating antigen paired with an N-specific monoclonal antibody (mAb) as the detection antibody. The percent inhibition (PI) of the ELISA was determined using 384 swine serum samples, with an indirect immunofluorescence assay (IFA) as the reference method. Through receiver operating characteristic analysis in conjunction with Youden's index, the optimal PI cut-off value was determined to be 51.65%, which corresponded to a diagnostic sensitivity of 98.79% and a diagnostic specificity of 100%. Of the 330 serum samples tested positive via IFA, 326 and 4 were tested positive and negative via the ELISA, respectively, while the 54 serum samples tested negative via IFA were all negative via the ELISA. The overall coincidence rate between the two assays was 98.96% (380/384). The ELISA exhibited good repeatability and did not cross-react with antisera against other swine pathogens. Overall, this is the first report on developing a blocking ELISA for PDCoV serodiagnosis.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Antibodies, Viral , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Deltacoronavirus , Enzyme-Linked Immunosorbent Assay/methods , Humans , Nucleocapsid Proteins , Swine
8.
J Virol ; 96(16): e0102722, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973796

ABSTRACT

Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.


Subject(s)
COVID-19 , Deltacoronavirus/metabolism , Histone Deacetylase 2/metabolism , Swine Diseases , Animals , Humans , Mammals , Peptide Hydrolases , SARS-CoV-2 , Swine , Swine Diseases/metabolism , Swine Diseases/virology
9.
J Med Virol ; 94(12): 5723-5738, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1971295

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in suckling piglets and has the potential for cross-species transmission, posing a threat to animal and human health. However, the susceptibility profile of different species of mice to PDCoV infection and its evolutionary characteristics are still unclear. In the current study, we found that BALB/c and Kunming mice are susceptible to PDCoV. Our results showed that there were obvious lesions in intestinal and lung tissues from the infected mice. PDCoV RNAs were detected in the lung, kidney, and intestinal tissues from the infected mice of both strains, and there existed wider tissue tropism in the PDCoV-infected BALB/c mice. The RNA and protein levels of aminopeptidase N from mice were relatively high in the kidney and intestinal tissues and obviously increased after PDCoV infection. The viral-specific IgG and neutralizing antibodies against PDCoV were detected in the serum of infected mice. An interesting finding was that two key amino acid mutations, D138H and Q641K, in the S protein were identified in the PDCoV-infected mice. The essential roles of these two mutations for PDCoV-adaptive evolution were confirmed by cryo-electron microscope structure model analysis. The evolutionary characteristics of PDCoV among Deltacoronaviruses (δ-CoVs) were further analyzed. δ-CoVs from multiple mammals are closely related based on the phylogenetic analysis. The codon usage analysis demonstrated that similar codon usage patterns were used by most of the mammalian δ-CoVs at the global codon, synonymous codon, and amino acid usage levels. These results may provide more insights into the evolution, host ranges, and cross-species potential of PDCoV.


Subject(s)
COVID-19 , Swine Diseases , Amino Acids , Animals , Antibodies, Neutralizing , CD13 Antigens/genetics , CD13 Antigens/metabolism , Deltacoronavirus , Humans , Immunoglobulin G , Mammals/metabolism , Mice , Phylogeny , RNA , Swine
10.
Vet Microbiol ; 271: 109494, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1886124

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that has the potential for cross-species infection. Many viruses have been reported to induce endoplasmic reticulum stress (ERS) and activate the unfolded protein response (UPR). To date, little is known about whether and, if so, how the UPR is activated by PDCoV infection. Here, we investigated the activation state of UPR pathways and their effects on viral replication during PDCoV infection. We found that PDCoV infection induced ERS and activated all three known UPR pathways (inositol-requiring enzyme 1 [IRE1], activating transcription factor 6 [ATF6], and PKR-like ER kinase [PERK]), as demonstrated by IRE1-mediated XBP1 mRNA cleavage and increased mRNA expression of XBP1s, ATF4, CHOP, GADD34, GRP78, and GRP94, as well as phosphorylated eIF2α expression. Through pharmacologic treatment, RNA interference, and overexpression experiments, we confirmed the negative role of the PERK-eIF2α pathway and the positive regulatory role of the ATF6 pathway, but found no obvious effect of IRE1 pathway, on PDCoV replication. Taken together, our results characterize, for the first time, the state of the ERS response during PDCoV infection and identify the PERK and ATF6 pathways as potential antiviral targets.


Subject(s)
Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Deltacoronavirus , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/metabolism , Swine , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
11.
Viruses ; 14(4)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1810315

ABSTRACT

Porcine deltacoronavirus (PDCoV) mainly causes severe diarrhea and intestinal pathological damage in piglets and poses a serious threat to pig farms. Currently, no effective reagents or vaccines are available to control PDCoV infection. Single-chain fragment variable (scFv) antibodies can effectively inhibit virus infection and may be a potential therapeutic reagent for PDCoV treatment. In this study, a porcine phage display antibody library from the peripheral blood lymphocytes of piglets infected with PDCoV was constructed and used to select PDCoV-specific scFv. The library was screened with four rounds of biopanning using the PDCoV N protein, and the colony with the highest affinity to the PDCoV N protein was obtained (namely, N53). Then, the N53-scFv gene fragment was cloned into plasmid pFUSE-hIgG-Fc2 and expressed in HEK-293T cells. The scFv-Fc antibody N53 (namely, scFv N53) was purified using Protein A-sepharose. The reactive activity of the purified antibody with the PDCoV N protein was confirmed by indirect enzyme-linked immunosorbent assay (ELISA), western blot and indirect immunofluorescence assay (IFA). Finally, the antigenic epitopes that the scFv N53 recognized were identified by a series of truncated PDCoV N proteins. The amino acid residues 82GELPPNDTPATTRVT96 of the PDCoV N protein were verified as the minimal epitope that can be recognized by the scFv-Fc antibody N53. In addition, the interaction between the scFv-Fc antibody N53 and the PDCoV N protein was further analyzed by molecule docking. In conclusion, our research provides some references for the treatment and prevention of PDCoV.


Subject(s)
Bacteriophages , Coronavirus Infections , Single-Chain Antibodies , Swine Diseases , Animals , Antibodies, Viral , Deltacoronavirus , Epitopes , Nucleocapsid Proteins/genetics , Single-Chain Antibodies/genetics , Swine , Technology
12.
Virology ; 556: 1-8, 2021 04.
Article in English | MEDLINE | ID: covidwho-1045103

ABSTRACT

Porcine deltacoronavirus (PDCoV) is one of the emerged coronaviruses posing a significant threat to the swine industry. Previous work showed the presence of a viral accessory protein NS6 in PDCoV-infected cells. In this study, we detected the expression of the NS6 protein in small intestinal tissues of PDCoV-infected piglets. In addition, SDS-PAGE and Western blot analysis of sucrose gradient-purified virions showed the presence of a 13-kDa NS6 protein. Further evidences of the presence of NS6 in the PDCoV virions were obtained by immunogold staining of purified virions with anti-NS6 antiserum, and by immunoprecipitation of NS6 from purified virions. Finally, the anti-NS6 antibody was not able to neutralize PDCoV in cultured cells. These data establish for the first time that the accessory protein NS6 is expressed during infection in vivo and incorporated into PDCoV virions.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/metabolism , Swine Diseases/virology , Viral Nonstructural Proteins/metabolism , Virion/metabolism , Animals , Antibodies, Viral/immunology , Cell Line , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Mice , Rabbits , Swine , Swine Diseases/metabolism , Viral Nonstructural Proteins/immunology
13.
J Proteome Res ; 19(11): 4470-4485, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-851211

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emergent enteropathogenic coronavirus associated with swine diarrhea. Porcine small intestinal epithelial cells (IPEC) are the primary target cells of PDCoV infection in vivo. Here, isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively identify differentially expressed proteins (DEPs) in PDCoV-infected IPEC-J2 cells. A total of 78 DEPs, including 23 upregulated and 55 downregulated proteins, were identified at 24 h postinfection. The data are available via ProteomeXchange with identifier PXD019975. To ensure reliability of the proteomics data, two randomly selected DEPs, the downregulated anaphase-promoting complex subunit 7 (ANAPC7) and upregulated interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), were verified by real-time PCR and Western blot, and the results of which indicate that the proteomics data were reliable and valid. Bioinformatics analyses, including GO, COG, KEGG, and STRING, further demonstrated that a majority of the DEPs are involved in numerous crucial biological processes and signaling pathways, such as immune system, digestive system, signal transduction, RIG-I-like receptor, mTOR, PI3K-AKT, autophagy, and cell cycle signaling pathways. Altogether, this is the first study on proteomes of PDCoV-infected host cells, which shall provide valuable clues for further investigation of PDCoV pathogenesis.


Subject(s)
Chromatography, Liquid/methods , Coronavirus Infections/metabolism , Proteome/analysis , Tandem Mass Spectrometry/methods , Animals , Cell Line , Coronavirus , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Epithelial Cells/virology , Proteome/chemistry , Proteome/metabolism , Proteomics , Swine
14.
Front Microbiol ; 11: 897, 2020.
Article in English | MEDLINE | ID: covidwho-615617

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea and induces proinflammatory cytokine responses in piglets. Our previous research showed that the specific-pathogen-free (SPF) chicks exhibited mild diarrhea and low fecal viral shedding, along with cecum lesions after PDCoV infection. Disturbances in the homeostasis of the gut microbiota have been associated with various diseases. We aimed to explore the effects of PDCoV infection on chick gut microbiota, short-chain fatty acid (SCFAs) production, and inflammatory cytokine expression in chicks, and also to investigate the relationship between gut microbiota and SCFAs or inflammatory cytokine expression of the PDCoV-infected chicks. Results obtained using 16S rRNA sequencing showed that infection with PDCoV strain HNZK-02 significantly altered the composition of chick gut microbiota, with the reduced abundance of Eisenbergiella and Anaerotruncus genera at 5 days post-inoculation (dpi) (P < 0.05), and an increased abundance of Alistipes genus at 17 dpi (P < 0.05). The production of SCFAs in the cecum of PDCoV HNZK-02-infected chicks, including acetic acid, propionic acid, and butyric acid, decreased in all cases. The expression of inflammatory cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-10) was increased in the cecum tissue and serum of the PDCoV HNZK-02-infected chicks when detected by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Further analysis showed significant correlation between bacterial genera and SCFAs or inflammatory cytokines expression in cecum of the PDCoV infected chicks. These findings might provide new insight into the pathology and physiology of PDCoV in chicks.

15.
Virus Res ; 278: 197869, 2020 03.
Article in English | MEDLINE | ID: covidwho-2388

ABSTRACT

Porcine deltacoronavirus (PDCoV) is the etiological agent of acute diarrhoea and vomiting in pigs, threatening the swine industry worldwide. Although several PDCoV studies have been conducted in China, more sequence information is needed to understand the molecular characterization of PDCoV. In this study, the partial ORF1a, spike protein (S) and nucleocapsid protein (N) were sequenced from Shandong Province between 2017 and 2018. The sequencing results for the S protein from 10 PDCoV strains showed 96.7 %-99.7 % nucleotide sequence identity with the China lineage strains, while sharing a lower level of nucleotide sequence identity, ranging from 95.7 to 96.8%, with the Vietnam/Laos/Thailand lineage strains. N protein sequencing analysis showed that these strains showed nucleotide homologies of 97.3%-99.3% with the reference strains. Phylogenetic analyses based on S protein sequences showed that these PDCoV strains were classified into the China lineage. The discontinuous 2 + 3 aa deletions at 400-401 and 758-760 were found in the Nsp2 and Nsp3 coding region in five strains, respectively, with similar deletions having been identified in Vietnam, Thailand, and Laos. Three novel patterns of deletion were observed for the first time in the Nsp2 and Nsp3 regions. Importantly, those findings suggest that PDCoV may have undergone a high degree of variation since PDCoV was first detected in China.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/classification , Deltacoronavirus/genetics , Genome, Viral , Phylogeny , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Diarrhea/virology , Feces/virology , Gene Deletion , Prevalence , Swine , Swine Diseases/virology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL